

CATIA V5 Training Exercises

2D Layout for 3D Design

Copyright DASSAULT SYSTEMES

Version 5 Release 19 August 2008

EDU_CAT_EN_LO1_FX_V5R19

Student Notes:

		EXERCI
Table of Contents		<u>Student Notes:</u>
Recap Exercise: Front Fork 2D Design	3	
Do It Yourself	4	
Recap Exercise: Front Rear Sprocket	5	
Design Process: Front Rear Sprocket Creation	6	
Do It Yourself	7	
Recap Exercise: Front Fork 3D Design	10	
Do It Yourself	11	
Master Exercise: Engine Assembly	12	
Design Intent	13	
Design Process	14	
Master Ex Step 1: Create a New Parts	15	
Master Ex Step 2: Design 2D Layout Views	17	
Master Ex Step 3: Create 3D Design	24	
Master Ex Step 4: Create Drawing Views	54	
Additional Exercise: Tyre Assembly	56	
Do It Yourself	57	

EXERCISE BOOK

Front Fork

Recap Exercise

40 min.

In this exercise you will create the 2D geometry for the front fork.

Front Rear Sprocket

Recap Exercise

20 min

In this exercise you will create the following 3D part from a 2D layout

EXERCISE BOOK

EXERCISE BOOK

Do It Yourself (1/3)

Open the "FrontRearSprocket_step1.CATPart"

- Extract the 3D profile of the sprocket shaft from the provided section view.
- Using the 3D Planes functionality, create two 3D planes with the help of the axes in the front view.
- Create an intersection of the two 3D planes.
- Create the shaft using the intersection as the shaft axis.

Jame: Drofile2DL 1			
iolor:			1 140
^{10de:} Wire (Automatic Propaga	ation)		
Support Plane: No Selection			
Input Geometry			
Line.8			
Check tangency	onnexity	Check n	nanifolo
Check tangency Check o	onnexity	Check n	nanifolo
Check tangency Check c	onnexity	Check n	nanifolo
Check tangency Check c	onnexity	Check n	nanifolo
Check tangency Check c Check curvature Output Geometry	onnexity	Check n	nanifolo
Check tangency Check c Check curvature Output Geometry Line.13	onnexity	Check n	nanifolo
Check tangency Check curvature Check curvature Output Geometry Line.13 Line.19		Check n	nanifolo
Check tangency Check c Check curvature Coutput Geometry Line.13 Line.19 Line.15	onnexity	Check n	nanifolo
Check tangency Check c Check curvature Output Geometry Line.13 Line.19 Line.15 Line.16		Check n	nanifolo
Check tangency Check c Check curvature Coutput Geometry Line.13 Line.19 Line.15 Line.16 Line.17	onnexity	Check n	nanifold

EXERCISE BOOK

Do It Yourself (2/3)

EXERCISE BOOK

Student Notes:

? X

•

OK Gancel

Input Geometry

- Extract 3D profile on a planar face of the tooth.
- Create a Pocket using the created 3D profile. R²
- Pattern 30 instances of the Pocket around the complete crown. This will create 30 ŵ teeth on the Sprocket.

Do It Yourself (3/3)

- Extract 3D profile on a planar face of the sprocket.
- Create a Pocket using the created profile.
- Pattern 4 instances of the Pocket around the complete crown.

ome permition	
ame: Profile2DL.3	
iolor:	
lode: Wire (Automatic Pror	pagation)
upport Plane: Face 4	
Toput Geometry	
Tubac geometri à	
Line.4	
Line,4	
Line,4	
Line.4	ch connevity. Check manifold
Line.4	ck connexity 🗌 Check manifold
Line.4 Check tangency Che Check curvature	ck connexity 🗌 Check manifold
Line.4	ck connexity Check manifold
Line.4	ck connexity Check manifold
Line.4 Check tangency Che Check curvature Output Geometry Line.6	ck connexity Check manifold
Line.4 Check tangency Che Check curvature Output Geometry Line.6 Line.5 Grade 26	ck connexity Check manifold
Line.4 Check tangency Check tangency Check curvature Check curvature Output Geometry Line.5 Circle.26 Circle.26	ck connexity Check manifold
Line.4 Check tangency Check tangency Check tangency Check curvature Check curvature Output Geometry Line.5 Circle.26 Circle.25	eck connexity Check manifold

You can compare your result with the end model "FrontRearSprocket_end.CATPart"

Student Notes:

EXERCISE BOOK

10

Front Fork 3D Design

Recap Exercise

In this step you will create the following 3D part from a 2D layout

EXERCISE BOOK

EXERCISE BOOK

Engine Assembly

Master Exercise Presentation

In this exercise you will design the components of the Piston Assembly. The piston and the connector are to be designed in the context of the Piston Assembly.

You will design these components using the following steps in the 2D Layout for 3D Design workbench:

- Defining 2D profiles using 2D Layout views
- Creating 3D elements by exporting the required 2D profiles
- Completing the 3D design

Engine Assembly – Design Intent

EXERCISE BOOK

Engine Assembly

Step 1: Create New Parts

<u>5 min</u>

In this step you will create new parts: Piston and Connector in the Piston Assembly.

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES

Do It Yourself

Document used: LO1Engine_Step1.CATProduct

- Edit 'Piston Assembly' inside the root product.
- Insert the following new CATParts:
 - 'Piston'
 - Connector'
- Save the assembly using 'Save Management' as "LO1Engine_Step2.CATProduct".
- Save the new CATParts.

Engine Assembly

EXERCISE BOOK

Do	o It Yourself (1/6)		Student Notes:
\$	Document used: LO1Engine_Step2.CATProduct	New Layout ? X Standard ISO_3D	
Yo	u will design the 2D views for the Connector.	A0 ISO	
۲	Edit the Connector part.	Paper size = 841 x 1189 mm Global scale = 1:1	
Ŵ	Switch to '2D Layout for 3D Design' workbench.	A O Portrait Landscape	
Ŵ	Keep the new layout creation ————————————————————————————————————	Cancel	
	Modify the sheet properties and set the parameters as shown.	Current selection ; Sheet.1/Layout/Piston	
		Sheet Visualization Name: Sheet.1 Scale: [1:1] Format Image: A2 ISO Image: Width : 594.00 mm Height : 420.00 mm Height : 420.00 mm Image: Display Vidth : 594.00 mm Image: Display Vidth : 594.00 mm Height : 420.00 mm Image: Display Vidth : Solution Image: Display Image: Landscape Projection Method Image: Standard Image: Third angle standard Image: Third angle standard	

EXERCISE BOOK

Do It Yourself (2/6)

- Create a new Auxiliary view using 'New view From' tool using yz plane as a reference plane.
- Create a 2D profile of the 'Connector' using the dimensions as shown.
- The inside diameter of the hole at the larger end of the Connector is equal to the shaft diameter of the Crank case.

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

EXERCISE BOOK

Do It Yourself (6/6)

Create an additional auxiliary section view from Section View C-C.

Activate the root CATProduct and save the assembly as "LO1Engine_Step3.CATProduct"

EXERCISE BOOK

Do It Yourself (3/29) Output the 3D profile of the connector on **(** Ę. Plane 2DL.1 from the Section view A-A using '3D Profile' tool. **Profile Definition** ? × Name: Profile2DL.2 Color: * Mode: Wire (Automatic Propagation) Support Plane: Plane2DL.1 Input Geometry Circle.16 Line.42 Circle.15 Line.12 Check tangency Check connexity Check manifold Check curvature Output Geometry Circle.15 Line.42 Circle.16 Line.12 🕥 OK 🥥 Cancel **Output profile**

EXERCISE BOOK

inputs:

۲

۲

۹.

Do It Yourself (4/29) ? × Pad Definition -First Limit Create a pad using following Type: Up to plane • Plane2DL.2 Limit: Use 'Profile2DL.1' as input Omm ÷ Offset: profile -Profile/Surface Selection: Profile2DL.1 Plane2DL.2 as limit plane Thick Reverse Side Mirrored extent Reverse Direction More>> OK Sancel Preview Create a pad using following inputs: Pad Definition ? × Use 'Profile2DL.2' as input profile - First Limit Use 'Up to next' as limit type Up to next • Type: No selection Limit: Omm ۲ Offset: -Profile/Surface Z Selection: Profile2DL.2 LIM1 Thick Reverse Side Mirrored extent Reverse Direction More>> Cancel Preview OK OK

EXERCISE BOOK

EXERCISE BOOK

Student Notes:

Do It Yourself (5/29)

Create a Mirror of using Current Solid as object to mirror and face of the pad as mirror plane.

1irror Definition	?)>
Mirroring element:	Pad.3\Face.1
Object to mirror:	Current Solid
-	ок 📔 🎑 Cancel)

Create Edge fillets of 1mm as shown

(

Do It Yourself (6/29)

Create Edge fillets of 1mm as shown

 \leq >

EXERCISE BOOK

Do It Yourself (7/29)

Create Edge fillets of 0.5mm as shown

Radius;	0.5mm	-
Object(s) to fillet:	2 elements	8
Propagation:	Tangency	•
Trim ribbons		
		10-00

۲

EXERCISE BOOK

Student Notes:

Student Notes: Do It Yourself (9/29) Edit Piston part. **(** Create the 3D profile of the piston from the **(** Ę. Auxiliary view B-B using '3D Profile' tool. **Profile Definition** ? × 40 Name: Profile2DL.1 Color: * Mode: Wire (Automatic Propagation) • Support Plane: No Selection Input Geometry Circle.2 Sectio view B-B Scale: 1:1 Check tangency Check connexity Check manifold Check curvature Output Geometry Circle.2 **Output this profile Output profile** OK Gancel

EXERCISE BOOK

EXERCISE BOOK

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Do It Yourself (12/29)

- Create a pad using following inputs:
 - Use 'Plane2DL.1' as limit plane
 - Use 'Profile2DL.1' as input profile

-First Lim	at	
Туре:	Up to plane	
Limit:	Plane2DL.1	
Offset:	Omm	
Reverse	e Side	
	e Side	
Reverse	e Side ed extent e Direction	
Reverse	e Side ed extent e Direction	

EXERCISE BOOK

Copyright DASSAULT SYSTEMES

Do It Yourself (14/29)

- Create a pocket using following inputs:
 - Use 'Plane2DL.2' as limit plane
 - Use 'Profile2DL.2' as input profile

\leq	~~	
S		

ocket De	finition	<u>?</u> ×
First Lim	it	
Туре:	Up to plane	
Limit:	Plane2DL.2	
Offset:	Omm	.
Profile/S	urface	
Selection:	Profile2DL.2	
Thick		
Reverse	e Side	
Mirrore	d extent	
Reverse	Direction	
		More>>
🗿 ОК	Sancel	Preview

EXERCISE BOOK

Do It Yourself (17/29)

- Create a pad using following inputs:
 - Use 'Profile2DL.6' as input profile

T II SC LIIII	t	
Туре:	Dimension	-
ength:	20mm	
Limit:	No selection	
-Profile/S	urface	
Selection:	Profile2DL.6	
🗌 Thick		
Reverse	Side	
Mirrore	d extent	
Reverse	Direction	

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Do It Yourself (20/29)

- Create a pad using following inputs:
 - Use 'Profile2DL.7' as input profile
 - Direction as shown

ype:	Dimension	•
ength:	10mm	
.imit:	No selection	
-Profile/S	urface	
Selection:	Profile2DL.7	
Thick		
Reverse	Side	
 Mirrore	d extent	
12	Direction	
Reverse	and a second	

EXERCISE BOOK

۹.

EXERCISE BOOK

(

Do It Yourself (24/29)

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES	
-----------------------------	--

Create a pad using following inputs: Use 'Profile2DL.13' as input profile Direction as shown	
	Pad Definition First Limit Type: Length: Limit: Profile/Surf. Selection: Pr Thick Reverse Sid Mirrored e Reverse Din

Pad Definit	ion	?
First Limi	t	
Туре:	Dimension	•
Length:	10mm	
Limit:	No selection	
Selection:	Profile2DL.13	
Mirrore	d extent	
Reverse	Direction	
		More>>
🕥 ок	Sancel	Preview

EXERCISE BOOK Student Notes:

Copyright DASSAULT SYSTEMES

Do It Yourself (26/29)

- Create a pad using following inputs:
 - Use 'Profile2DL.14' as input profile
 - Face of Pad.8 as limit

imit: Pad.8\Face.2 Offset: Omm 2 Profile/Surface Selection: Profile2DL.14	
Offset: Omm E Profile/Surface Selection: Profile2DL.14	
Profile/Surface	
Mirrored extent	10
Reverse Side	
Reverse Direction	

EXERCISE BOOK

Copyright DASSAULT SYSTEMES

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Do It Yourself (28/29)

- Activate PartBody. ۹.
- Perform a Boolean operation 'Add' and 1 select 'Body.2' as a body to be added to PartBody.
- Perform a Boolean operation 'Remove' and **(** select 'Body.3' as a body to be removed from PartBody.

52

EXERCISE BOOK

Student Notes:

Cancel

? ×

Preview

Add

Add Body.2 To: PartBody

After: Pocket.1

OK

EXERCISE BOOK

Engine Assembly

Step 4: Create Drawing Views

<u>5 min</u>

In this step, you will create drawing views of the Connector and Piston from the 2D views.

Student Notes: **Do It Yourself** Document used: LO1Engine_Step4.CATProduct Edit Connector part. Switch to 2D 1 New Drawing ? × ? × New Drawing Creation Layout for 3D Design workbench. Standard Select an automatic layout: • ISO 고문 무리 Sheet Style Switch to Drafting workbench and ۲ A2 ISO • Format A2 ISO Paper size = 420 × 594 mm Global scale = 1:1 create a new Drawing with the sheet Standard ISO 00 Format A0 ISO A parameters and the layout as shown. Paper size = 841 x 1189 mm 1 Global scale = 1:1O Portrait A Modify... Sancel OK Landscape Save the Drawing as ۱ Hide when starting workbench Connector.CATDrawing. OK Gancel Antiliary viso

Copyright DASSAULT SYSTEMES

EXERCISE BOOK

Tyre Assembly

Additional Exercise

In this exercise you will modify the design changing the tire diameter from 32mm to 25mm.

EXERCISE BOOK

EXERCISE BOOK