Realistic Shape Optimizer

Version 5 Release 19
January 2009
EDU_CAT_EN_RSO_FI_V5R19
About this course

Objectives of the course
Upon completion of this course you will be able to:
- Deform a surface using the Displacement file resulting from Finite Element Analysis

Targeted audience
Surface designers, Tooling designers

Prerequisites
Students attending this course should be familiar with the basics of wireframe and surfaces creation

Instructor Notes:

4 hours
Table of Contents

- Introduction to Realistic Shape Optimizer 4
 - Why Do You Need RSO? 5
 - Warning 7
 - Accessing the Workbench 8
- Surface Deformation 9
 - Digitized Morphing: Inputs 10
 - Displacement Files 11
 - User Interface 13
 - Update Digitized Morphing 17
- Exercises 18
 - Exercise 1: Blade 19
 - Exercise 2: Stamped Part 22
 - Exercise 3: Plane Wing 25

Instructor Notes:
Introduction to Realistic Shape Optimizer

In this lesson, you will become familiar with RSO basics.
Why Do You Need RSO? (1/2)

Context 1: Use results of a finite element analysis (FEA)
- A design part has been analyzed by a finite element method.
- The finite element method outputs a description of the part deformation.
- The deformation has to be applied to the CAD part to get the corresponding deformed CAD part.

Examples:
- Injection simulation for the computation of shrinkage: the shrinkage is evaluated by finite element methods and has to be compensated when designing the mold.
- Computation of spring-back: spring-back can be evaluated by a finite element simulation and needs to be compensated at the die face design level.
- Propellers or turbine blades are designed in use (movement, temperature...) by specialized software, their shape when still at ambient temperature has to be found at production stage.
Why Do You Need RSO? (2/2)

Context 2: Use results of a deviation analysis
- A reference part is available in CATIA
- A prototype or sample has been manufactured
- The manufactured part is compared to the reference part by Deviation Analysis
 - Requires the use of CATIA Quick Surface Reconstruction workbench (QSR)
- A CAD model of the real part is required

Examples:
- Integration of real part in digital mock-up for further analysis
- Tuning of tooling (specially stamping dies)
WARNING

A Deviation Analysis is not an exact representation of a deformation!

The displacements created by a Deviation Analysis between two shapes are different from the
displacements to apply to transform a shape into the other one, especially when the initial shape
presents sharp edges or curvature variations or when the deformation includes a "stretching" of
the initial shape.

Instructor Notes:
Accessing the Workbench

- RSO is accessible from Core and Cavity Design or Generative Shape Design workbenches
- This tool bar is active by default in CCV workbench
- In GSD it has to be activated via View > Toolbars

Core & Cavity Design

Generative Shape Design

Instructor Notes:
Surface Deformation

In this lesson you will learn about Deforming a Surface with a Displacement File and Update a Deformation Feature.

Instructor Notes:
Digitized Morphing: Inputs

The Input Data for Digitized Morphing is:

- **Surface(s) (multi-selection available)**
 - the surface(s) can be any CATIA V5 or imported surface. They can be associative or not.

Warning:

- Today the command does not support multi-output bodies, it outputs one feature for each selected surface.
- In case of multi-selection the deformation field is re-computed for each feature. To avoid excessive computation time you can activate Datum Mode.
- It is better to join surfaces before performing the deformation to preserve the connections between the input surfaces. (the topology is strictly preserved)

- Some computation and display parameters.
- One or several displacement files.

Instructor Notes:
Displacement Files (1/2)

A Displacement File is a simple text file with 6 columns of real values.

- Real values represent Point Coordinates and corresponding Displacement along the main axes.
- The first line with text (title, column headers, ...) will be skipped
Displacement Files (2/2)

A Displacement File may be:

- A result of a CATIA Analysis & Simulation computation (CAT Analysis)
- A result of deviation analysis in Quick Surface Reconstruction Workbench (QSR).

Instructor Notes:
User Interface (1/4)

First tab: Deformation Element

- Surface(s) to deform
- Displacement file(s)
- Statistics on the selected displacement file(s)
- Displacement Parameters:
 - Scale: Ratio to be applied to displacements
 - Tolerance: Accuracy of surface approximation

Display Parameters

- Displacement: show displacements as points and lines, the length of the lines is given by the Scale factor.
- Out Tolerance: once a deformation computation has been done you can highlight points where accuracy has not been reached.

Instructor Notes:
User Interface (2/4)

Second tab: Limit Element

- Limit curve (only one)
- Selection of side to keep and side to deform

Deformed side is highlighted

Continuity to preserve along the limit line between deformed and non-deformed areas.

Choice of radius for the elimination of displacements near the limit line to avoid conflicts: all points located inside pipe with given radius are ignored.

Instructor Notes:
User Interface (3/4)

Third tab: Parameters

Pts to ignore = Ratio (%) of points that can be ignored to improve the quality of the result = after a deformation computation, the displacements where the accuracy is the lowest are removed and a second computation is performed (= erroneous or unreliable points are filtered out); you can highlight ignored points for checking.

Threshold: Maximum value for displacement length, greater displacements are ignored; you can highlight points out of threshold for checking.
User Interface (4/4)

When working in product mode you can also choose if the deformed surface should be created in the current part or in a new part.
Update Digitized Morphing

- The Update command can be used to update the Digitized Morphing features after a change in the displacement file(s).
- In the case of features created from a Deviation Analysis or from translational displacement vectors stored in a CATAnalysis the update can be done with the standard update mechanism of CATIA (automatic or manual update with `[]`).
- When you select the command, all Digitized Morphing features in the current part are analyzed to check if the displacement file(s) have changed since the feature creation.
- A displacement file is said to have changed if its creation date is changed (the feature includes a time stamp).
- If no displacement file has been modified you get a message:

```
No Update Action

There is no Digitized Morphing Feature to update.

OK
```

- Otherwise the list of features with modified displacement files is shown and you can select the features to update:

Instructor Notes:
Exercises

You will apply the theory learnt in the following exercises.

- Exercise 1: Blade
- Exercise 2: Stamped Part
- Exercise 3: Plane Wing
Exercise 1

Blade

30 min

The goal of the exercise is to deform a CATIA V5 surface using an external displacement file, for example resulting from a finite element analysis.
Exercise 1: Blade

Step 1: Deform surface

15 min.

In this step, you will open the part file to process, then apply a deformation defined by a displacement file.
Exercise 1: Blade

Step 2: Update deformation

15 min.

Now you will modify the displacement file and update the Digitized Morphing feature.
Exercise 2

Stamped Part

30 min

The goal of the exercise is to deform a CATIA V5 surface using a deviation analysis computed with CATIA Quick Surface Reconstruction workbench.

Instructor Notes:
Exercise 2: Stamped Part

Step 1: Deform surface

15 min.

In this step, you will open the part file to process, then apply a deformation defined by a deviation analysis created in CATIA Quick Surface Reconstruction workbench.
Exercise 2: Stamped Part

Step 2: Update deformation

15 min.

In this step, you will modify the deviation analysis computation parameters and update the deformed shape.

Instructor Notes:
Exercise 3

Plane Wing

30 min

The goal of the exercise is to try RSO in a product environment.

Instructor Notes:
Exercise 3: Plane Wing

Step 1: Deform surface

15 min.

In this step, you will open the CATAnalysis document, then apply a deformation defined by the result of the load simulation.
Exercise 3: Plane Wing

Step 2: Update deformation

15 min.

In this step, you will modify the load case to modify the corresponding translational displacement vectors, then you will update the Digitized Morphing feature.
To Sum Up

In this course you have seen:

- How to deform a surface or a set of surfaces using a displacement file, a deviation analysis or an analysis result
- How to update Digitized Morphing features